"WHAT'S IT WORTH TO YOU? VALUATION OF WATER SYSTEMS"

BY: ANTHONY FESTA, ASA
FEBRUARY 16, 2016
WATER INFRASTRUCTURE RENEWAL: HOW MUCH WILL IT COST AND HOW DO WE FINANCE IT?

<table>
<thead>
<tr>
<th>Pipeline 1</th>
<th>Pipeline 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed 1860</td>
<td>Installed 1860</td>
</tr>
<tr>
<td>Brown sandy soil</td>
<td>Brown sandy soil</td>
</tr>
<tr>
<td>Moderate soil corrosivity</td>
<td>Moderate soil corrosivity</td>
</tr>
<tr>
<td>6” Cast Iron Pipe</td>
<td>6” Cast Iron Pipe</td>
</tr>
</tbody>
</table>

Images

- **31% Thickness Loss**
- **1% Thickness Loss**
Knowing what drives value, and what does not, will help all interested parties know what their asset is worth:

Interested parties:
- State and Municipal Executives
- Financiers – banks and bondholders
- Purchasers
- Local Taxpayers
WHY ARE VALUATIONS NEEDED?

- **Governmental Regulations**
 - New Jersey: WIPA
 - Illinois: HB1379
 - Missouri: HB 142
 - Indiana: HB 1319

- **Internal Planning**
 - Ease of other economic burdens including pension funding
 - Municipal bond refinancing

- **Transaction-Related (financial reporting, tax)**
 - Public-Private Partnerships
 - Outright sale
 - Possible flotation

- **Insurance**

- **Collateral Financing**

- **Liquidations**
A “valuation” is a study/analysis to determine the monetary value of something (i.e. – an asset or a liability). It is an independent opinion of value.

A valuation typically differs from an evaluation in that the latter will look at the functionality and operational characteristics of an item, but may not provide a monetary value.
WHAT IS VALUE?

1. **Fair Value or Fair Market Value:** the price an asset or liability would change hands between a *willing buyer/seller*, both fully aware of the *facts*, with no *compulsion* to buy/sell, as of a *specific date*.

2. **Reproduction / Replacement Cost:** the cost to replace/reproduce an asset *today* using *identical/similar* materials that can equal/match the functionality / utility of the subject asset.

3. **Liquidation Value:** the price an asset/liability would change hands between parties, within a *defined/set time period*, as of a *specific date*.
1. **Cost Approach:** based on the principle of substitution in that a prudent investor would not buy an asset for more than the cost to replace it, less all forms of depreciation and obsolescence.

2. **Market Approach:** determines value by looking at comparable assets that have sold in the marketplace, and adjusting such comparables (based on capacity, condition, etc.) to equate them to the subject asset.

3. **Income approach:** determines value by looking at the present value of future economic benefits of owning the subject asset.
Market Approach: determines value by looking at comparable assets that have sold in the marketplace…

Issue: How do we find such comparables and adjust them to the subject asset?

Income approach: determines value by looking at the present value of future economic benefits of owning the subject asset.

Issue: How can this be determined if the subject asset is not an income-producing property, or if projections are not available?
METHODS OF APPLYING THE COST APPROACH

- **Determine the reproduction / replacement cost new**
 - Trending
 - Direct pricing (i.e. – engineering studies)
 - Cost-to-Capacity study
 - Ensure all hard and soft costs are captured (installation, freight, tax, etc.)

- **Measure and quantify physical deterioration (or “wear and tear”)**
 - Chronological age vs. effective age
 - Condition assessment (i.e. – Echologics ePulse)
 - Remaining life input

 Normal Life = Effective Age + Remaining Life

- **Measure/quantify functional obsolescence** (a **decrease** in value due to internal issues within the system)

- **Measure/quantify economic obsolescence** (a **decrease** in value due to **external** issues far and away the system):
 - Inutility
 - Business Enterprise Value*

Cost approach results may be compared to the results of an income approach to ensure the value of the overall business can support the value of the discreet pieces.
COST APPROACH EXAMPLE

- (2) Ten HP pumps at a local pump house

- **Subject Cost** – $60,000

- **Subject Capacity** – can pump 50 gallons/minute

- **Subject Age** – 9 years

- **Subject Condition** – Fair

<table>
<thead>
<tr>
<th></th>
<th>Cost App.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement Cost New (Installed)</td>
<td>$70,000</td>
</tr>
<tr>
<td>Normal Life</td>
<td>12</td>
</tr>
<tr>
<td>Effective Age</td>
<td>9</td>
</tr>
<tr>
<td>% Good</td>
<td>25%</td>
</tr>
<tr>
<td>RCNLD</td>
<td>$17,500</td>
</tr>
<tr>
<td>Obs. Adj.</td>
<td>None</td>
</tr>
<tr>
<td>Final Value</td>
<td>$17,500</td>
</tr>
</tbody>
</table>
The City of Valverde ("Valverde") operates a water system with 3,000 miles of buried distribution pipes (predominantly 6” cast-iron).

System initially constructed in 1940, material upgrades made in 1998 and 2004 where 40% of the buried infrastructure was replaced.

Valverde must replace/upgrade the remaining 60% of its buried infrastructure. As funds are not available, per state regulations a buyer must be found. During the search period, an unsolicited offer from Ajax Capital Corp. of $150 million is offered to own/operate the system.
- Valverde conducts an internal appraisal where it applies indexes from the Bureau of Labor Statistics to inflate the cost basis from $163,200,000 to $350,000,000.

- Depreciation is applied based on chronological age from the records, held at 20% good based on the local property tax tables.

- The value of the system is then calculated to be $70,000,000 ($350 million x 20%)

- No value is allocated to the vehicle fleet as it’s deemed immaterial.

Asset Description

<table>
<thead>
<tr>
<th>Asset Description</th>
<th>Date in Svce.</th>
<th>Life (Yrs)</th>
<th>Cost Basis</th>
<th>Net Book Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>1940</td>
<td>40</td>
<td>$150,000,000</td>
<td>$0</td>
</tr>
<tr>
<td>Pump Houses</td>
<td>1940</td>
<td>20</td>
<td>300,000</td>
<td>0</td>
</tr>
<tr>
<td>Wastewater System</td>
<td>1975</td>
<td>25</td>
<td>4,500,000</td>
<td>0</td>
</tr>
<tr>
<td>Wastewater System Upgrade</td>
<td>2010</td>
<td>25</td>
<td>6,500,000</td>
<td>5,200,000</td>
</tr>
<tr>
<td>Truck Fleet</td>
<td>2010</td>
<td>5</td>
<td>500,000</td>
<td>0</td>
</tr>
<tr>
<td>New Water Tower</td>
<td>2014</td>
<td>25</td>
<td>1,400,000</td>
<td>1,300,000</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>$163,200,000</td>
<td>$6,500,000</td>
</tr>
</tbody>
</table>
PITFALLS IN VALVERDE’S ESTIMATES OF VALUE

- The desktop analysis took the asset ledgers at face value. However, an independent valuation determines the following:

 - The buried infrastructure upgrades made in 1998 and 2004 were never capitalized

 - While the cost per mile capitalized in 1940 is represented at $50,000/mile, an independent engineering study estimates that the cost today would be $800,000/mile, which the indices applied do not accurately capture.

 - Based on the material of construction of the newer pipes, and the location of the older pipes, a condition assessment was done that determined the pipes are effectively 40% good rather than 10 to 20% good.

 - Including the vehicle fleet at $0 is not reflective of market value, as there is an active market for used trucks that are equipped with the tools and repair items necessary to maintain a system.
• Myth #1: Net book value is a good proxy for fair market value
 – Reality: Net book value is an accounting exercise to recapture costs over time and runs to zero after a set amount of years. Assets in operation whose costs are written off may (and are) still operating, thus adding value and are worth more than zero!

• Myth #2: Utilizing the cost basis on the books to “desktop” the system is sufficient
 – Reality: Depending on the passage of time, indices may not truly capture the true cost today of a system, not to mention the fact that if certain items of a system were no capitalized but expensed, all parties may not have a complete picture of “what’s out there,” thus understating value!

• Myth #3: “My system is old…it’s worthless! I’ll sell it for the value in the customer base!”
 – Reality: Utilizing certain technologies the remaining service life (RSL) of a system can be determined. The RSL can be compared to the design life, and applied against the current cost of the system to determine a true estimate of value!
<table>
<thead>
<tr>
<th>Asset Description</th>
<th>Cost Basis</th>
<th>RCN</th>
<th>% Good</th>
<th>Fair Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>$150,000,000</td>
<td>$2,400,000,000</td>
<td>40%</td>
<td>$960,000,000</td>
</tr>
<tr>
<td>Pump Houses</td>
<td>300,000</td>
<td>1,000,000</td>
<td>40%</td>
<td>400,000</td>
</tr>
<tr>
<td>Wastewater System</td>
<td>4,500,000</td>
<td>15,000,000</td>
<td>40%</td>
<td>6,000,000</td>
</tr>
<tr>
<td>Wastewater System Upgrade</td>
<td>6,500,000</td>
<td>Inc. Above</td>
<td>Inc. Above</td>
<td>Inc. Above</td>
</tr>
<tr>
<td>Truck Fleet</td>
<td>500,000</td>
<td>750,000</td>
<td>N/A</td>
<td>275,000</td>
</tr>
<tr>
<td>New Water Tower</td>
<td>1,400,000</td>
<td>1,500,000</td>
<td>95%</td>
<td>1,425,000</td>
</tr>
<tr>
<td>Totals</td>
<td>$163,200,000</td>
<td>$2,418,250,000</td>
<td></td>
<td>$968,100,000</td>
</tr>
</tbody>
</table>
The estimated value of the system is well above the offering price of $150 million based on the additional due diligence conducted.

Initial CAPEX planning based on the capitalized costs would need to be revisited, as the true cost to replace a mile of pipe is not indicative of what was capitalized historically.

If no internal or external due diligence were conducted, would assuming NBV of $6,500,000 have been a reasonable proxy for Fair Value?
• All three approaches to value are considered, not all may be used.

• If two or more methods are used, all approaches should be reconciled to each other.

• Valuations / appraisals are more art than science, but by conducting the necessary due diligence and gathering all the facts and circumstances, the probability of making a material misstatement in value is mitigated.

• What’s it worth to you?
QUESTIONS